H_2O was added to ppt 4.4 g of 11. Other compds in Table II were obtained by this method.

2- $(\alpha$ -Methyl- α -hydroxybenzyl)benzoxazole (9).—A soln of 10 (2.65 g) in anhyd Et₂O (50 ml) was dropped slowly into a soln of MeMgBr (1.36 g) in 50 ml of anhyd Et₂O with stirring and cooling. After 6 hr at room temp 30 ml of H₂O and 1 ml of concd HCl were added, and the org layer sepd, was washed with H₂O, and dried (MgSO₄). After evapn of the solvent, 1.6 g of white solid (9) was collected. 2- $(\alpha$ -Methyl- α -hydroxybenzyl)-5-chloroben-zoxazole (10) was obtained in the same way (Table I).

Acknowledgments.—The authors wish to thank J. Sorge and K. Young for carrying out the antiviral experiments. The financial assistance of the SRI-Institute Research and Development Program is acknowledged for the antiviral studies.

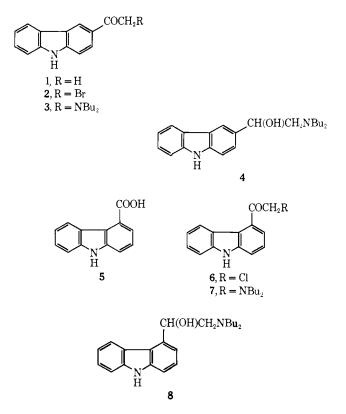
3- and 4-Carbazole Dialkylaminocarbinols as Potential Antimalarial Agents

VERNON H. BROWN, MONSOOR KEYANPOUR-RAD, AND JOSEPH I. DEGRAW*

Life Sciences Research, Stanford Research Institute, Menlo Park, California 94025

Received January 22, 1971

The important role of quinolinemethanol compounds in malaria chemotherapy has prompted the investigation of other heteroaryl carbinols for antimalarial activity. Accordingly we have synthesized 3- and 4- $(\alpha$ -hydroxy- β -dibutylaminoethyl)carbazole and tested the compounds for their antimalarial action against *Plasmodium berghi* in mice. Unfortunately neither compound showed significant activity in this test system, as shown in Table I.


		TABLE I					
Antimalarial bioassay result ^a							
Compd	40	Dose, 1 160	320	640			
4	0.3	0.3		0.5			
8	0.2	0.4	0.8				

^a Increase in survival time (days) of treated mice beyond that of untreated controls after single sc dosages (3 days postinfection). Average survival time of untreated controls was 7.0 \pm 0.5 days. The infecting organism was *P. berghei*.

The synthesis of the 3 isomer began with 3-acetylcarbazole 1 followed by bromination and reaction of the bromo ketone 2 with Bu_2NH . Reduction of the amino ketone 3 with $NaBH_4$ readily afforded the amino alcohol 4. The acid chloride of carbazole-4-carboxylic acid 5 was treated with CH_2N_2 to give the chloromethyl ketone 6. A similar displacement with Bu_2NH and reduction yielded 8.

Experimental Section

Compounds followed by empirical formulas only were analyzed for C, H, N with values within $\pm 0.4\%$ of theoretical.

3-Dibutylaminoacetylcarbazole (3).—A mixt of 7.4 g of 2, 40 ml of n-Bu₂NH, and 150 ml of MeOH was refluxed 3 hr and evapd *in vacuo*, finally at 1 mm. The residue was treated with 200 ml of H₂O, acidified to pH 1–2 with concd HCl, and washed with 200 ml of EtOAc. The acid phase containing much insol, oily HCl salt of the product was alkalized with 10% NaOH to pH 10–11. The oily ppt was extd into 200 ml of Et₂O which was washed with H₂O, dried (MgSO₄), and evapd to leave 4.4 g of syrup. After two pentane washes the syrup was dried at 1 mm to leave 4.0 g which solidified. A portion was recrystd for anal., mp 106–112° (pentane–C₆H₆). Anal. (C₂₂H₂₈N₂O): C, calcd 78.5; found 78.0.

3- $(\alpha$ -Hydroxy- β -di-*n*-butylamino)ethylcarbazole (4).—A mixt of 4.0 g of **3**, 1.5 g of NaBH₄, and 150 ml of EtOH was warmed into soln and stirred for 20 hr at room temp. The solvent was evapd *in vacuo* and the residue was partitioned between Et₂O and H₂O. The Et₂O was dried (MgSO₄) and evapd to leave 2.7 g of gum, which was extd with three 90-ml portions of boiling pentane. The ext was gassed with HCl. The hygroscopic salt was collected and triturated with 10 ml of Me₂CO and the white cryst were collected (1.10 g, 25%), mp 165-168°. Anal. (C₂₂-H₃₀N₂O·HCl).

4-Chloroacetylcarbazole (**6**).—The mixt of tetrahydrocarbazole-5- and -7-carboxylic acids² was readily sepd as the Me esters by silica gel chroinatography. Dehydrogenation of the 5 isomer followed by saponification afforded 4-carboxycarbazole (**4**).³ A soln of the acid chloride (from 3.16 g of acid and 1.1 ml of SOCl₂ in 50 ml of C₆H₆) in 40 ml of CH₂Cl₂ was added dropwise to 45 mmoles of CH₂N₂ in 150 ml of Et₂O at 0-5°. After 1 hr at 0-5° the soln was gassed with HCl for 20 min and evapd *in vacuo* (2.52 g). Chromatography on silica gel gave 2.07 g (57%), mp 158-160.5°. Anal. (C₁₄H₁₀ClNO).

4-Dibutylaminoacetylcarbazole (7).—A mixt of 1.47 g of **6** and 20 ml of Bu₂NH was stirred at 35–40° for 15 hr. A work-up similar to that for the 3 isomer gave an orange syrup (1.0 g, 49%), which slowly crystd; recrystd, mp 196–204° (EtOH). Elemental anal. and bands at $3.9-4.2 \mu$ in the ir indicated a carbonate salt. Anal. $(C_{22}H_{28}N_2O)_2 \cdot H_2CO_3$.

4- $(\alpha$ -Hydroxy- β -di-*n*-butylamino)ethylcarbazole Picrate (8). —The ketone 7 was reduced with NaBH₄ in EtOH as above to yield a yellow syrup (36%). The picrate, mp 174–179°, was obtained from EtOH-H₂O. Anal. (C₂₈H₃₃N₅O₈).

³⁻Bromoacetylcarbazole (2).—A mixt of 10.7 g (0.029 mole) of PhMe₃N⁺·3Br⁻, 6.0 g (0.029 mole) of 3-acetylcarbazole¹ (1), and 100 ml of THF was stirred at room temp for 5 hr, then evapd *in vacuo*. The residue was thoroughly washed with H₂O and Et₂O to yield 7.1 g (86%); mp 158–159°; anal. sample, mp 160–162° (C₆H₈). Anal. (C₁₄H₁₀BrNO): Br.

⁽¹⁾ E. Meizner, J. Amer. Chem. Soc., 57, 2327 (1935).

⁽²⁾ W. M. Collar and S. G. Plant, J. Chem. Soc., 808 (1926).

⁽³⁾ P. H. Carter, S. G. Plant, and M. Tomlinson, *ibid.*, 2210 (1957).

Acknowledgment.—This work was supported by the U. S. Army Medical Research and Development Command under Contract No. DADA 17-67-C-7129. This is Contribution Number 890 from the Army Research Program on Malaria.

Antimalarial Agents. 7. Compounds Related to 4,4'-Bis(aminophenyl) Sulfone¹

> IVAN C. POPOFF, * GOPAL H. SINGHAL, AND ALLAN R. ENGLE

> Pennwalt Corporation, King of Prussia, Pennsylvania 19406

> > Received January 12, 1971

4,4'-Bis(acetamidophenyl) sulfone (I) and its lower homolog (II) are highly active² against Plasmodium berghei in mice. Since they are less toxic² than 4,4'bis(aminophenyl) sulfone [4,4'-diamino(diphenyl sulfone), DDS, III], it was of interest to investigate the antimalarial activity of some other DDS-related compounds in which one or both NH_2 groups of III were replaced by NSO, NHOH, NHNH₂, NO₂, etc. Our study also included structures containing the moieties S, SO, SO₂CH₂, and SO₂S instead of the SO₂ bridge, as well as a pyridine analog of DDS.

The N-sulfinylamines XII [mp 149-152°, from PhH, 62% yield, Anal. (C₁₂H₈N₂O₅S₂): C, H, N] and XXIII [mp 126-128° from 1:1 petr ether-PhMe, 86% yield, Anal. $(C_{12}H_9NS_2O_3)$: N] were synthesized from the corresponding amines by the method for 4,4'-bis(sulfinvlaminophenvl) sulfone (IV) described in the Experimental Section, which includes the preparation of the remaining new compounds.

The testing^{1c} was carried out by a method described previously³ and the detailed data are listed in Tables I-IV.

None of the compounds reported here was more active than I in the mice test. Replacement of one of the NH_2 groups of DDS (III) with H or Cl resulted in total loss of antiplasmodial activity (XXII-XXVII) but not of toxicity (XXII). The oxidation of one NH_2 to NO_2 , however, did not render the resulting structures completely inactive provided that the second NH_2 of III was not disubstituted as in the inactive VII, XIV, XVII, and XX. The activity of the sydnones XVIII and XIX, and of the N-sulfinyl structure XII, in which the second NH_2 is disubstituted, can be explained by the relative ease of hydrolysis of the sydnonyl and N-sulfinyl moieties to $NHNH_2$ (XIII) and NH_2 (XI), respectively. The relative activity of the pairs I-VIII, I-IX, V-XI, and VIII-IX leads to the speculation that a possible metabolism of the NO_2 group to NH_2 , rather than the reverse, could be part of the mode of action of

(2) Test data supplied by Dr. Bing Poon of Walter Reed Army Institute for Research.

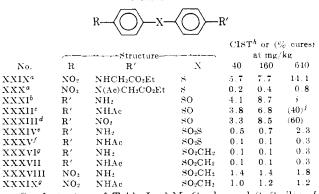

(3) T. S. Osdene, P. B. Russell, and L. Rane, J. Med. Chem., 10, 431 (1967).

TABLE I								
ACTIVITY OF								
\sim								
$R \rightarrow \langle () \rangle \rightarrow S(O_2) \rightarrow \langle () \rangle \rightarrow R' Y = \frac{1}{N} + \frac{1}{CO}$								
	\leq		1	`` ```				
No.	R	R'	40	160	640			
I ^a	R'	NHAe	20	100	100			
11a	R'	NHCOH	20	100	60 ^m			
1110	R'	NH2	(8.0)	40	207			
IV	R'	NSO	(11.8)	20	20 m			
V ^b	NH2	NHOH	20	100	m			
vI ^c	NH ₂	NHNH2	(10, 4)	20	40 ^m			
VIIC	NH_2	$N(NO)CH_2COX^n$	(10, 4) (0, 2)	(0.2)	(0.6)			
VIIId	NO ₂	NHAc	(0, 2) (8, 3)	60	80			
$1X^b$	NHOH	NHAe	60^{i}	60	100			
X ^e	NH ₂	NHAe	40	60*	40 ^m			
XI ^f	NO ₂	NHAC NH2	(8,2)	40	100			
XII	NO ₂	NSO	(6, 6)	40	60 ^m			
XIII	NO ₂ NO ₂	NHNH2	(0,0) (13,9)	100^{l}	m 100			
XIV	NO_2 NO_2	NAcCH2CO2Et	(13,9) (0,2)	(0, 2)	(0.2)			
XV	NO2 NO2	NHCH2CO2Et			(0.2) 80			
XVI	NO ₂		(3.1)	(7.7)	40			
		NHCH ₂ CO ₂ H	(2.0)	(7,3)				
XVII ^c	NO:	N(NO)CH ₂ CO ₂ H	(0, 2)	(0,2)	m			
XVIIIC	NO2	Y(R'' = H)	(3.5) (7.8)	20	60 80			
XIX	NO_2	Y(R'' = Br)	(5,3)	40	80			
XX	NO_2	N(Ac)CH(Me)CO ₂ Et	(0.5)	(0.7)	(1,9)			
XXI	NO ₂	NHCH(Me)CO ₂ Et	(4,7)	(9.7)	80			
XXII ⁹	11	NH ₂	(1,3) ²	(4, 1)	$(4.4)^m$			
XXIII	Н	NSO	(0.8)	(1.2)	(1.8)			
XXIV	H	NHCH2CO2Et	(0.9)	(0.9)	(1.1)			
XXV	H	$Y(\mathbf{R}^{\prime\prime} = \mathbf{H})$	(0.5)	(0.7)	(1,9)			
XXVI	Cl	N(NO)CH ₂ CO ₂ H	(1.5)	(0.7)	m = >			
XXVII	C1	$Y(\mathbf{R''} = \mathbf{H})$	(0, j)	(1.5)	(3.7)			
XXVIIIC	NO_2	N	(0, 7)	(0.7)	(0.9)			
		Ň _{No} Ó						
		U 1						

Мe

" Test data supplied by Dr. Bing Poon of Walter Reed Army Institute for Research. ^b S. Owari, Yakugaku Zasshi, 71, 246 (1951). G. H. Singhal and I. C. Popoff, J. Heterocycl. Chem., 5, (1951). ^a G. H. Singha and I. C. Foboli, J. Heterberget. Chem., J.
217 (1968). ^d C. W. Ferry, J. S. Buck, and R. Baltzly, "Organic Syntheses," Collected Vol. 3, Wiley, New York, N. Y., 1955, p 239. ^e G. W. Raizis, L. W. Clemence, M. Severac, and J. C. Moetsch, J. Amer. Chem. Soc., 61, 2763 (1939). ^f Yo. 10. Gabel and F. L. Grinberg, Zh. Prikl Khim. (Leningrad), 12, 1481 (1939); Chem. Abstr., 34, 62444 (1940). 9 W. R. Waldron and E. E. Reid, J. Amer. Chem. Soc., 45, 2406 (1923). h Change in survival time, *i.e.*, mean survival time of treated mice minus the mean survival time of the control. 4 CIST of 10.3 at 20 mg/kg. i CIST of 1.9 and 1.7 at 80 and 20 mg per kg, respectively. $^{-k}$ 80% cures at 320 mg/kg. / 20% cures at 320 mg/kg. // See Table IV for toxicity data. " $X = NHCH_2Ph$.

^a See footnote c of Table I. ^b M. Gazdar and S. Sniles, J. Chem. Soc., 1833 (1908). ^c W. Braun, German Patent 964,593 (1957); Chem. Abstr., 53, P12240h (1959). d H. H. Szmant and J. J. McIntoch, J. Amer. Chem. Soc., 73, 4356 (1951). B. J. Boldyrev and L. M. Khovalko, Zh. Obsch. Khim., 31, 3483 (1961); Chem. Abstr., 57, 9719e (1962). / C. Bere and S. Smiles, J. Chem. Soc., 2359 (1924). 9 B. R. Baker and M. V. Querry, J. Org. Chem., 15, 413 (1950); ^h See footnote h of Table I. ⁱ See Table IV for toxicity data. i 20% cures at 320 mg/kg.

^{(1) (}a) Part 6, J. Med. Chem., 13, 1002 (1970); (b) this study was supported by U. S. Army Medical Research and Development Command. This is Contribution No. 889 from the Army Research Program on Malaria; (c) the compounds were tested by Dr. L. Rane of the University of Miami, Florida; (d) analyses are indicated by symbols of the elements, since analytical results obtained for these elements were within $\pm 0.4\%$ of the theoretical values